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In the present paper the stability of plane Couette flow is studied. The stream 
function and distribution of vorticity and the Reynolds stresses for the linearized 
solution are computed. The stability effect of the non-linear terms are also 
discussed and it is found that for small amplitudes, the non-linear terms are 
destabilizing. A neutral curve determining the necessary amplitude in order to 
get instability, is found. The convergence of the expansion in the latter case is, 
however, somewhat uncertain and the result should therefore only be considered 
as a first, rough approximation. 

1. Introduction 
The stability of plane Couette flow has been investigated in several papers, 

notably in those by Hopf (1914) (a pioneering work), Grohne (1954), Riis (1962) 
and Gallagher & Mercer (1962). They examine the problem by considering 
infinitesimal disturbances such that the equations may be linearized. The result 
of these papers is that an infinite set of eigensolutions exists, all of them being 
stable modes. There is no proof, however, that this set is complete, i.e. it is a 
possibility that unstable modes also exist. It seems, however, to be generally 
believed now that no such modes exist. It is pertinent to mention here that if 
the velocity of propagation of the waves (eigensolutions) is assumed to be equal 
to the velocity in the centre of the field, it may be shown that the Couette 
flow is stable (Southwell & Chitty 1930, Dikii 1964). This assumption is true for 
moderate values of the parameter aR (a  the wave-number and R the Reynolds 
number). Thus for a = 1.0, aR < 70 and for a = 0.5, aR < 80 with a and R 
defined as in $2. 

It seems reasonable that there is difficulty in performing experiments on plane 
Couette flow. This is likely the reason why very little is known about the real 
behaviour of this flow. The only experiment we know that is relevant to the 
present problem is due to Reichardt (1956). He claims to find that Couette flow 
is stable for Reynolds numbers less than about 750. For larger values the flow 
becomes turbulent. This indicates that Couette flow is unstable for finite dis- 
turbances. It seems therefore to be an important problem to investigate the 
stability feature of the non-linear terms, i.e. see whether or not these are de- 
stabilizing and, most important, to examine if the effect of these terms may 
render the Couette flow unstable. To the authors’ knowledge, the only attack 
on this problem is that of Kuwabara (1967). Using the same approximate 
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equations as Meksyn & Stuart (1951) and applying a Galerkin method, he 
claims to find the critical Reynolds number to be about 1.9 x lo5. However, the 
validity of some of his assumptions is not discussed. 

Stuart (1960) has developed a method to examine the non-linear stability 
behaviour of a fluid model. For periodic disturbances the amplitude A(t) satisfies 
an equation of the Landau (1944) type, 

provided that ( A  1 is sufficiently small. The terms neglected in (1.1) are of the 
sixth order and higher. His method has been extended by Watson (1960) and 
Eckhaus (1965). If the linearized solution of the problem is exponentially 
unstable, k, is positive. If in addition k, is negative, we notice that IAl will 
tend towards a steady solution. For Reynolds numbers and wave-numbers 
sufficiently close to those on the neutral curve (if such ;t curve exists), k, is 
arbitrarily small and thus the solution found from (1.1) is asymptotically 
correct. 

This method has been applied by Reynolds & Potter (1967) and Pekeris & 
Shkoller (1967) to investigate the non-linear stability behaviour of plane 
Poiseuille flow. In  the first-mentioned paper the stability of a combined plane 
Poiseuille and Couette flow is also discussed in the cases where a neutral curve 
exists. 

For plane Couette flow, however, the linearized solution is stable for all values 
of the Reynolds number and no neutral curve exists. Thus k, is always negative 
and cannot, contrary to the cases mentioned above, be made arbitrarily small 
for any disturbance. If k, is found to be negative, the considered non-linear 
terms also are stabilizing. On the other hand, if k,  is positive they are destabiliz- 
ing. If in this case the initial amplitude is sufficiently large, the non-linear de- 
stabilizing effect may overshadow the linear stabilizing tendency. The amplitude 
just large enough to render the motion unstable is obtained by finding the steady 
solution of (1.1). For a given wave-number this threshold amplitude depends 
only on the Reynolds number. This relationship constitutes a non-linear neutral 
curve, namely the threshold amplitude as a function of the Reynolds number 
for the given wave-number. 

Here a serious difficulty arises. Since the steady solution so obtained is not 
an asymptotic solution, is it any approximation to the correct one? Or, in other 
words, is the steady value of IA I small enough to render ( 1.1) a reasonable approxi- 
mation to the exact equation? Important information about this question would 
be obtained if the next term k,[A 16 were known. The calculation of k, is rather 
involved and is not undertaken in the present paper. However, one of the 
typical terms contributing to k, is easily computed, namely the term associated 
with the fourth-order modification of the mean velocity profile. It is seen that 
if [ k,] 9 I k,l , (1.1) will give 1A2] < 1. If further k, is of the same order of magnitude 
as k,, the sixth-order term is small compared to the terms retained. This seems 
to be true in the present case, as far as the contribution to k, mentioned above is 
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considered. This will be discussed further in 3 6.  It may also be a point that even 
though the validity of the approximations is uncertain, the threshold amplitude 
and the non-linear neutral curve obtained seem reasonable. 

2. The solution of the linearized problem 
We consider the motion of an incompressible fluid flowing between two hori- 

zontal rigid planes. The upper plane has a velocity U and the lower plane a 
velocity - U ,  and the distance between the planes is 2 H .  Introducing U and 
H as the characteristic velocity and length respectively, the velocity in the 
undisturbed flow may be written v,, = iz, 

where i denotes the unit vector along the horizontal x axis which is placed 
symmetrically between the two planes. Furthermore, let v, @ and 5 denote the 
two-dimensional perturbation velocity, the perturbation stream function and 
the perturbation vorticity, respectively. The equation governing the motion 
may then be written 

(2.1) 

a a  
ax at 

5 = VZ$. (2.3) 

R is the Reynolds number, R = UH/V,  (2.4) 

) 5 = V - V L  (2.2) R-lV2 - z-- - ( 
where 

Y the kinematic viscosity, V2 the two-dimensional Laplacian, and t denotes the 
dimensionless time, the characteristic time being HIU. The linearized version of 
(2.2) reads 

The boundary conditions (no slip) lead to 

Let us assume that 

and, correspondingly, 

where A is a constant. 

5 = A f ( z )  exp { b ( x  - ct)> 

$ = AP(z) exp (icc(x - c t ) ] ,  

Equation (2.5) then takes the form 

(2 .6 )  

and P(z) is found from (g-ap(z) = f ( Z ) .  (2.10) 

The boundary conditions are given by 

F (  & 1) = P’( f 1) = 0. (2.11) 

Equations (2.9) and (2.10) with the boundary conditions (2.11) constitute an 
eigenvalue problem with a and R given parameters and c the eigenvalue. It is 
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readily seen from (2.9) that if f(z)exp(ia(z-ct)} is a solution, 
f (  - z )  exp { - ia(x + ct)}  is another solution. We may therefore, instead of (2.7) 
and (2.8),  write 

< = Af ( z )  exp (acit) exp {ia(x - c, t ) }  + Bf ( - z )  exp (a@) exp { - ia(x + c, t ) }  (2.12) 

and 

1c. = AF(x)exp(ac,t)exp(ia(x-c,t)}+BB’( -z)exp(acit)exp{-ia(x+c,t)}, 

c = c, + ic, 
(2.13) 

where 

and B denotes a constant amplitude. The first part of (2.13) corresponds to a 
wave travelling in positive x direction and the second part to a symmetric wave 
travelling in the opposite direction. 

Equations (2.9) and (2.10) combined may be written 

The adjoint of equation (2.14) takes the form 

(2.14) 

(2.15) 

where P(z)  satisfies the same boundary conditions as F(z) .  It is easily seen that 
the following orthogonality relation is valid for the eigenfunctions Fn(z) of 
(2.1 4) and their adjoint functions Pn(z) (see Eckhaus 1965, p. 59) 

< j % ( ~ f f , ( Z D  = 0 (m =I= 4, (2.16) 

expressing that the adjoint stream function is orthogonal to the vorticity. 
Correspondingly 

Here { } denotes integration from x = - 1 to z = 1. 
If, in equation (2.9), a new variable 

7 = (aR)f ( 2  - c) - i K 2 ,  

where K = a(&)-*, 

is introduced, (2.9) takes the form 

The solution of this equation may be written 

f(59 = Gf1(r) + ~ z f z ( r L  

f,,z(7) = q i E . H p 2 ) ( ~ ~ $  exp ( - iin) ) where 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

with H$) and HP) denoting Hankel functions of order 3, and Cl and C, are arbi- 
trary constants. These constants are determined by the boundary conditions 
which also lead to the secular equation determining the eigenvalues. This secular 



On the non-linear stability of plane CouetteJlow 101 

equation has been discussed by Hopf (1914), Grohne (1954) and Riis (1962). 
Calculations of the eigenvalues have also been undertaken by Gallagher & 
Mercer (19629, applying a Galerkin method instead of making use of the eigen- 
functions (2.21). The main result of these papers is that for a given value of 01. 

an infinite number of eigenvalues exist, all of them corresponding to a stable 
motion. In  the present work we need the eigenvalues for a broader range of 
Reynolds number and wave-number than given in the papers referred to. We 
have therefore found it necessary to  recalculate the eigenvalues. 

The secular equation determining the eigenvalues is given in the appendix 
(equations (A4)-(A 6) ). In  the vicinity of q-l exp ( - igr), fi(q) is very large and 
rapidly oscillating. We have therefore found it necessary to integrate (A6) 
by using the asymptotic expansions for the integrand. It was also found con- 
venient to apply asymptotic expansions to integrate (A 4). The resulting equation 
in ql (and 7-J was solved by a Newton-Raphson method which was found to 
converge very rapidly. The inaccuracy in the eigenvalues is therefore essentially 
due to the application of asymptotic expansions. By using a varying number 
of terms in the asymptotic expansion, the error in the eigenvalues is estimated 
to be of order 0.1 %. The result of the calculations is shown in table 1 for the first 
mode, i.e. the most unstable eigenfunction. 

a = 0.5 
7 - v  

CCR CT - ci 

1 0 3  0.5991 0.1149 
2 x 103 0.6797 0.0899 
3~ 103 0.7193 0.0779 
5~ 103 0.7624 0.0652 

104 0.8108 0.0513 

TABLE 1 

a = 1.0 
I 

CT - ci 
0.6051 0.1196 
0.6835 0.0928 
0.7222 0.0802 
0.7646 0.0668 
0.8121 0.0523 

To tabulate the corresponding values of the vorticity and stream function we 
have used, for q near qP1, asymptotic expansions for the Hankel functions. 
For other values of q we have utilized a standard routine for Bessel functions. 
The vorticity and stream function thus obtained are displayed in figures 1 and 2 
for a = 0.5 and for aR equal to  lo3 and lo4. Here the constant Cl in (2.20) is 
chosen equal to unity. The adjoint stream function, tabulated and normalized 
in a similar way, is shown in figure 3. 

It is seen from figure 1 that for high values of the Reynolds number, the vor- 
ticity is almost entirely located in the upper fluid layers, having numerical 
maxima in the boundary layer at  the upper plane and in the layer where the 
velocity of propagation of the perturbation equals the basic flow. Also a con- 
centration of vorticity is found at  the lower plane. 

The Reynolds stresses UW are shown in figure 4. It is seen also that UW is 
virtually zero except in the upper fluid layers. 
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FIGURE 1. Vorticity distributions f (z )  for a = 0.5. -, u,R = lo3; ----, aR = lo4. 
(u) Real part. (b)  Imaginary part. 

z= 1.0 

FIGERE 2. Stream function P(z) for a = 0.5. -, aR = lo3; - - - - ,UR = 104. 
(a) Real part. ( b )  Imaginary part. 
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z= 1.0 
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FIGURE 3. Adjoint stream function P(z )  for a = 0.5. -, aR = los; - - - - , aR = lo4. 
(a) Real part. (b) Imaginary part. 

z= 1.0 
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FIGURE 4. Reynolds stresses as function of z for a = 0.5. -, uR = los; 
---- , UR = 104. 
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3. The non-linear problem 
It will be assumed that the perturbation is two-dimensional and for simplicity 

we consider only the case of a wave travelling in the positive x direction (i.e. 
B = 0). The solution of the non-linear perturbation equation will be approximated 
by a truncated Fourier series in the usual way. The stream function and the 
vorticity may be written 

II. = Cll-n(z,t)exp{ina(x-c,t)},) 
n 

5 = 2 d ( z ,  t )  exp {ina(x - c,t)). 
n 

For $n and the following relations hold 

where an asterisk denotes the complex conjugate. By writing U for the modifica- 
tion of the mean flow 

(3.3) 
- all- 

ax 
u. = 

and introducing (3.1) into (2.2), we obtain the following equations 

(3.6) 

These equations correspond to (2.5)-(2.7) in Stuart’s (1960) paper, and are 
correct to the third order in the amplitude of @l. The boundary conditions to be 
satisfied are 

z = * 1) .  (3.7) 
W n  u=,@ = - = o  ( - 

ax 

Following Eckhaus (1965) we assume that (2.14) has a complete set of eigen- 
functions Fn(z) with eigenvaluss c,. @1 may then be written 

m 

Let c1 denote the eigenvalue for the least stable mode (i.e. minimum aci) for 
the given values of a and R. We then a.ssume that $l to the first approximation 
is given by ll-l@, t )  = A(f)P(z) ,  (3.9) 
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where for simplicity we have neglected subscripts by writing A(t)F(x) for 
Al(t)F'(z). The assumption involved in (3.9) is generally made in related problems, 
and corresponds to an intuitive reasonable choice of the initial conditions. 

When (3.8) is introduced into (3.4)-(3.6) the approximation (3.9) can be used 
on the right-hand sides of these equations. Further the orthogonality relation 
(2.16) is applied on (3.4) and the following equation is then obtained 

( A  ( t )  - ac,A(t) { f  ( 2 ) R Z ) )  = - {M(z ,  t)P(z)) ,  
where 

(3.10) 

-i2aA*(f'*$,-F'*~,) .  

(3.11) 
U ,  Q and @, are now to be determined from 

(R-'&)E a 2  = iaAA*(fP*-f*P), 
(3.12) 

(3.13) 

(3.14) 

Here f ( 2 )  and P(x) are the vorticity and adjoint eigenfunction, corresponding 
to F(z).  

The solutions of the equations (3.10)-(3.14) are very difficult to obtain in the 
general case. However, if A / A  is approximately constant, one solution of (3.12)- 
(3.14) can easily be found by separation of the variables. This is the case if 
(i) A is so small that A / A  is approximately equal to mi, or if (ii) AA* is nearly 
independent of time. In both cases we can write 

U = iaAA*u(z), 

5, = iaA2g(x), 

$, = iaA2G(z) 

and obtain an amplitude equation of the Landau type 

(3.15) 

A-aciA+a2pA2A* = 0, (3.16) 

where p = pT + ipi is defined by 

p {  f P )  = {~ (FU" - fu- F*g' - 2F'*g + f * G' + 2f '* a)}. (3.17) 

By combination of (3.16) and its complex conjugate the equation 

d 
1.4 I = k,lA 1' + k,IA 1' 

is obtained. The coefficients are given by 

1. k,  = 2 a ~ i ,  

k,  = -2a2p,.J 

(3.15) 

(3.19) 
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4. The amplitude equation for small amplitudes 
If the amplitude is sufficiently small, the truncated Fourier series will be a 

good approximation. In this case we also have A / A  approximately equal to 
ac, and from (3.11)-(3.14) we therefore get 

If  in these equations aci is put equal to zero, the equations (4.3) and (4.4) in 
Stuart's (1960) paper are obtained. Stuart cancels the terms containing aci 
since in his paper they are small of the fourth order. Here, however, aei cannot 
be chosen arbitrary small, and is therefore retained. It may, true enough, be 
argued that for large values of R (which we are concerned with) aci tends towards 
zero as (aR)-Q. However, also the term R-ld2/dzZ becomes small of the order 
(aR)-* for increasing R. 

Solving (4.1)-(4.3) with the appropriate boundary conditions we obtain the 
second-order approximation. It is seen that the solution of (4.2) is composed of 
Bessel functions of order 4, for details, see appendix B. When these solutions 
are introduced in (3.17), p and thereby k ,  in (3.18) is found by an integration. 
It is found that the sign of k, changes quite rapidly when a and R vary. As an 
example we may choose a = 0.5. For aR = lo3 and 3 x lo3 we find k, = 8-01 
and 7.13, respectively (destabilizing). For aR = 2 x 103 and 5 x lo3 we find k ,  = 

- 21.19 and - 1.14 respectively (stabilizing). 
It must here, however, be pointed out that U is initially not zero. This means 

that we are really examining the stability properties of a velocity profile which 
is not strictly a Couette profile. The results seem therefore only to indicate that 
for some velocity profiles close to the Couette profile the second-order terms act 
stabilizing whereas for other profiles they act destabilizing. It may here be men- 
tioned that the solution of (4.1) becomes inh i t e  when aRci = _+,,,. This 
means that in these cases U is initially infinite. Therefore, in order that the solu- 
tion shall be of any physical meaning, c, must not have a value close to one of 
these critical values. 

It is of much more interest to consider the case that ii is initially zero. This 
does not, however, lead to any amplitude equation of the Landau type since 5 
is not proportional to AA*. If, however, & (and q+J are given initial values in 
agreement with (3.15) and only small values of time are considered, an amplitude 
equation of the former type will occur. Under these conditions 21 may be omitted, 
and the new value of k ,  is found from that above by neglecting the contributions 
from U in (3.17). 

It is now found that for all values ofa and R considered (a  equal to 0.5 and 1.0 
and aR in the range 103--104) k, is positive. This shows that at least for small 
values of time the non-linear terms act destabilizing. 
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5. The equation for the threshold amplitude 
The results of the previous section indicate that the non-linear terms may 

decrease the stability of the Couette flow. The important problem is, however, 
whether for sufficiently large disturbances, the non-linear destabilizing tendency 
may overcome the linear stabilizing effect such that the motion becomes un- 
stable. If this is true, a threshold amplitude must exist, i.e. an amplitude de- 
pendent of a and R for which the disturbance is neutral. For such a disturbance 
A(t)  is a harmonic function of time, A(t)  cc exp ( - iaAc,t) where Ac, is the change 
in the wave velocity due to the non-linear terms. 

Assuming that it suffices to take into consideration terms to the third order 
only, the calculations will be very similar to those given in $4. With the time 
dependence assumed and by neglecting Ac,, (3.12) and (3.13) lead to 

(R-1 (g - 4x2) - i2a(z - c,) g = fF' - f 'P, I 
instead of (4.1) and (4.2). 

At this stage Ac, is an unknown quantity and we have found no better approxi- 
mation than putting Ac, equal to zero. An estimate of Ac, may be found from 
(3.16) which gives 

(5.3) ACT = ci PiIPr. 

If now pg and p ,  are computed from the equations above (with Ac, = 0) it is 
found that pt/pl. is very close to unity for the considered values of a and R. 
From table 1 it is then seen that for large values of uR, Ac, is small compared to 
c,. The main effect of taking into account Ac, in (5.2) would be to displace the 
critical layer for c2 compared to that of el. Since el and Q are moving with the 
same velocity of propagation, their critical layers should be located at  the same 
level. This can be obtained in two ways, either by taking into account Ac,, 
in the definition of (obviously being the most correct way but leading to con- 
siderable difficulties), or putting Ac, = 0 in b, as we have done here. It seems 
reasonable that these two ways of proceeding will lead to approximately the 
same values for p .  

The equations (5.1) and (5.2) are similar to those applied by Stuart (1960). 
The reasoning for deriving the equations are, however, somewhat different, 
since Stuart cancels a/at in the equations corresponding to (3.12) and (3.13) 
by arguing that it leads to higher order terms. 

The coefficient k, in (3.18) may now be found by applying the solutions of 
(5.1) and (5.2) in (3.17). It is found that k, is negative for the values of a and R 
considered, such that an threshold amplitude can be found. The neutral curve 
is shown in figure 5 for a = 0.5 and a = 1.0 and for aR in the range 103-104. 
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6. Discussion and conclusion 
The main conclusion to be drawn from $ 4  is that only in special cases does 

an amplitude equation of the Landau type exist. It is found that if ;li is initially 
zero and $, is initially given by (3.15), an amplitude equation exists for small 
values of time t. The non-linear terms are found to act destabilizing. If, however, 
U is initially different from zero, the non-linear term will act stabilizing or de- 
stabilizing, depending on the initial velocity profile. 

lo-* 

8 x I O - ~  

- 

6x lo-’ -$ - 
4 x  lo-’ 

2 x  I O - ~  

I I I 1 I I I 1 I I I 
lo3 ?xIO-’ 3 ~ 1 0 ~  4 ~ 1 0 ~  5x103 104, 

R 

FIGURE 5. Amplitudes of the neutral solution as function of R. __ , the vorticity 
amplitude I A I ; - - - -, the maximum vertical velocity lallPll. 

The principal result from $5 is the existence of a threshold amplitude. It 
should be noted that since the vorticity distribution f (2) is normalized to be of 
order unity for all values of a and R, the amplitude I A I displayed in figure 5 
is the threshold amplitude for the vorticity. It is seen that IAl decreases very 
slowly as aR increases, and the curve suggests a constant value of the amplitude 
for large aR. This result is also suggested from a closer inspection of the vorticity 
equation. By introducing 7, defined by (2.18)) the vertical co-ordinate is stretched 
such that for large values of aR, a/ay is of order unity. Therefore, the horizontal 
and vertical velocities will be of order (aR)-f and (aR)-$ times that of the vor- 
ticity, respectively. Introducing this in (2.2)) we end up with an asymptotic 
equation for g which is independent of aR. 

In figure 5 is also shown the maximum value (occurring near the critical layer) 
of the vertical velocity ia$,, which accordingly decays as (aR)-Z. This velocity 
is small compared to the velocity of the planes which is unity. It is found that for 
aR = 103 and 104, the modulus of ia$, for a = 0.5 is 5 x 10-3 and 10-3 respectively. 

If the initial perturbation is concentrated in a layer about x = z,,, the initial 
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stream function may be approximated by a 6 function, $l(z, 0)  = ad(z - zo). 
Applying an eigenfunction expansion and assuming that the higher order eigen- 
functions do not influence the amplitude of the first eigenfunction essentially 
(since they are more stable), we obtain from the orthogonality relations (2.16) 

* 

a{P”(zo) - a z ~ ( z , ) )  = A(O)  ( P ( z ) f ( x ) ) .  (6.1) 

If zo is chosen as the position of the critical layer, it  is found that the amplitude 
la/ is 2 . 4 ~  10-31A(0)) for aR = lo3. It is noted that this amplitude is much 
smaller than that of the maximum vertical velocity discussed above. If zo is placed 
outside the critical layer, the amplitude a is found to increase radically. 

It may be worth while to mention that the Meksyn-Stuart approximation 
(Meksyn & Stuart 1951) would have given the correct sign of the coefficient k, 
in (3.18). This is in accordance with the result of Reynolds & Potter (1967) 
for plane Poiseuille flow. In  the present problem, however, it turns out that the 
contributions from the terms proportional to exp (2iax) are just as important 
as the contributions from ZL and a22L/az2. For example for a = 0.5 and aR = 103 
the contribution to k, from the terms of the latter type is 4.65 whereas that from 
terms proportional to exp (2iax) is 8.91. Correspondingly, for aR = lo4 we find 
the values 2.17 and 6.71, respectively. 

An estimate of the magnitude of the terms neglected in the derivation above 
is very difficult to obtain. It is here pertinent to refer to a suggestion of Stuart 
(1960) that to secure the validity of the expansion, ci < (aR)-) must hold. 
Stuart’s suggestion is based on the argument that Acr must be much smaller than 
the width of the critical layer, in order that the critical layers of the first approxi- 
mation and the finite solution shall nearly coincide. By using a line of argument 
as in $5, it seems to us that this requirement is too severe, at  least when only a 
first approximation to the amplitude equation is wanted. 

The result found above that the threshold amplitude is asymptotically in- 
dependent of aR, is reflected in the coefficients k,, k,, . . ., in the amplitude equa- 
tion, in fact all these constants will be asymptotically proportional to (aR)-%. 
The convergence of the series is therefore independent of the Reynolds number 
when aR-+m. A test of the convergence may be obtained by calculating the 
term k,IA16. The ratio k,/k, is found to be large, rendering \A\  small in the first 
approximation. If lk31 < k;/lkll, k3lAI6 obviously may be cancelled. To deter- 
mine k, it is necessary to know the third-order terms. 

These terms are not computed here; there is, however, one part of k, which can 
be readily found. This contribution, k& is due to the change of the mean flow 
caused by waves of wave-number 2a, and is believed to be an important one. It 
is found that for a = 0.5 and aR = lo3, k; = - 118.7, while for aR = lo4, 
IC; = - 130.9. The ratio llcjl IA16/1k21 IAI4 is thus about 7.4 x lo-, and 8.5 x 10-2 
for aR = 103 and lo4, respectively, which indicates a reasonable good convergence 
of the series. 

On the other hand, the energy equation indicates a rather poor convergence. 
In  the neutral case the work of the Reynolds stresses must be negative to com- 
pensate the dissipation. In  our first approximation (the linear solution), how- 
ever, this work is found to be positive and in fact nearly equal to the dissipation, 
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indicating that the Couette flow exhibits relatively strong (linear) stability. 
The work of the Reynolds stresses due to higher order terms must therefore be 
at least twice that of the linear terms in order that a balance in the energy equa- 
tion should be obtained. We therefore believe that our amplitude equation gives 
only a relatively rough approximation to the threshold amplitude. 

The numerical calculation was carried out on the CDC 3300 computer of 
the University of Oslo. In  $ 2  is described the method used in tabulating the 
eigenvalues and the first-order solutions. The same method is also used for the 
second-order solutions, quoted in appendix B. The integrals in (3.17) are then 
obtained by a numerical integration. The second-order solutions show many 
of the same features as the first-order solutions, and it is found that the lower 
half of the field gives no noticeable contribution to the integrals. The length of 
the subintervals was chosen equal to 5 x and the accuracy was checked in 
some few cases by doubling the number of subintervals. It turns out that the 
integrands are very sensitive to inaccuracies in the eigenvalues. The error in 
E ,  is however estimated to be less than 5 %. 

The authors wish to thank their colleague Dr E. Riis for many valuable 
discussions. 

Appendix A 

be written 
The first-order vorticityf(7) is given by (2.20). Since the stream function may 

F = ~ - ~ ( a R ) - * S : - ~ f ( u )  sinh ~ ( 7  - u)du, 

I::% f l (u)exP(Ku)du~~~~fz(UJexP ( -Ku)du  

-I::, I::l 

(A 1) 

the secular equation takes the form 

fl(u) exp ( - KU) du fz(u) exp ( ~ u ) d u  = 0. (A21 

K and 7 are defined in $2, and 7+tl = ~ ( z  = f. 1) are complex numbers, located 
in the first and second quadrants, respectively. 

Following Riis (1962), we transform the integrals in the following way. First 
we write 1" ( )du =So ( )du+/"(  0 )du. 

9-1 1 - 1  

By means of the relations 

(A 3) i 
f 1 W  = -f&exp ( - W), 
f&) = exp (iW fz(u exp ( - W )  

-exp (-i$n)f,(uexp (-i@)), 

it is found that, in all the integrals, the path of integration will be located in the 
region - in 6 arg u < in. For large values of aR, fi, 2(7-1 exp ( - i$n) ) will be 



On the non-linear stability of plane Couette flow 111 

large compared with fl(rl). Utilizing this, (A2) may with a good approximation 
be written 

exp (isn) 1" fi(u) {exp ( K u )  -,u exp ( - m)> du + !:exp ( - i*n)  f 2 ( 4  

C(K) = exp (i4n) jo 

m exp ( i t n )  

x {exp ( K W )  -pexp ( - K u ) }  du+C(K) -pC( - K )  = 0, (A4) 

where (see Riis 1962, appendix A) 

m exp (ikn) 

fdu)  +XP W e x P  (iWf 

+ e x p ( ~ u ) + e x p ( ~ u e x p (  - i&))}du = 2.3~exp{(i/12)(5n-4~~)} (A5) 

and ,u is a constant given by 

Appendix B 
By introducing w2 = - 2aRci, the solution of (4.1) takes the form 

(fF*-f*F)sinw(z-u)du 
w sin 213 

(B 1) 1 +1 

-1 
-sinw(z+ 1)s (fp*-j*p)sinw(l-u)du . 

The solution of (5.1) is then obtained from (B 1) as the limit w + 0. For the stream 
function G we have 

G(z)  = (2a)-f:l g(u )  sinh 2a(z-u)du. (B 2) 

Let R, = a-l(aR)*(fF'- f'F) be considered as a function of 7 (by means of 
(2.18)). The solution of (4.2) is then 

$,(r) and 515~(1;1) are fundamental solutions of 

Zi(7 - i K 2 )  $(r) = 0 I d2 {w- 
and A is the Wronskian 

A = $ ~ $ z - $ l $ ~  = 2*(6i/~). 
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A convenient choice of q51 and q52 is 

T. Ellingsen, B. Gjevik: and E. Palm 

The solution of (5.2) has the same form (B 3). In fact, the only modification needed 
is to replace ~2 in (B 4) by K~ - ci(aR)). 
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